organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-4-Bromo-2-[2-(hydroxymethyl)phenyliminomethyl]phenol

Yavuz Köysal,^a* Şamil Işık^a and Ayşen Ağar^b

^aDepartment of Physics, Ondokuz Mayıs University, TR-55139 Samsun, Turkey, and ^bDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Samsun, Turkey Correspondence e-mail: yavuzk@omu.edu.tr

Received 1 November 2007; accepted 21 November 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.083; wR factor = 0.164; data-to-parameter ratio = 14.5.

The title compound, C₁₄H₁₂BrNO₂, adopt the phenol-imine tautomeric form. The dihedral angle between the aromatic rings is 27.49 (2)°. In the structure, there are $O-H\cdots O$ intermolecular hydrogen bonds and $O-H \cdots N$ and $C-H \cdots O$ intramolecular hydrogen bonds. The phenol H atom forms a strong intramolecular hydrogen bond with the imine N atom.

Related literature

For related literature, see: Özek et al., 2007; Moustakali-Mavridis, Hadjoudis & Mavridis (1978).

Experimental

Crystal data

C14H12BrNO2
$M_r = 306.16$
Monoclinic, P21/c
a = 6.4356 (13) Å
b = 4.6361 (5) Å
c = 42.693 (8) Å
$\beta = 96.904 \ (16)^{\circ}$

V = 1264.5 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 3.24 \text{ mm}^{-1}$ T = 293 (2) K $0.59 \times 0.32 \times 0.03~\text{mm}$

Data collection

Stoe IPDSII diffractometer	8887 measured reflections
Absorption correction: integration	2418 independent reflections
(X-RED32; Stoe & Cie, 2002)	1281 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.435, \ T_{\max} = 0.827$	$R_{\rm int} = 0.158$

Refinement

-	
$R[F^2 > 2\sigma(F^2)] = 0.083$	H atoms treated by a mixture of
$wR(F^2) = 0.164$	independent and constrained
S = 0.99	refinement
2418 reflections	$\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$
167 parameters	$\Delta \rho_{\rm min} = -0.45 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} O1 - H1 \cdots N1 \\ C12 - H12 \cdots O2 \\ O2 - H2 \cdots O2^{i} \end{array}$	0.84 (6)	1.86 (6)	2.638 (7)	155 (7)
	0.93	2.46	2.807 (8)	102
	0.82	1.97	2.765 (10)	163

Symmetry code: (i) -x + 1, -y, -z.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BX2117).

References

- Burnett, M. N. & Johnson, C. K. (1996). Report ORNL-6895.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Moustakali-Mavridis, I., Hadjoudis, E. & Mavridis, A. (1978). Acta Cryst. B34, 3709-3715.
- Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
- Özek, A., Albayrak, Ç., Odabaşoğlu, M. & Büyükgüngör, O. (2007). Acta Cryst. C63, 0177-0180.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4916 [doi:10.1107/S1600536807061855]

(E)-4-Bromo-2-[2-(hydroxymethyl)phenyliminomethyl]phenol

Y. Köysal, S. Isik and A. Agar

Comment

The H atom in the compound is located on atom O1 thus confirming a preference for the phenol-imine tautomer in the solid state, it is consisted with the related structure (Özek *et al.*, 2007). It is known that schiff bases may exhibit thermochromism depending on the planarity or non-planarity, respectively (Moustakali-Mavridis *et al.*, 1978). The title compound stabilezed by inter and intramolecular hydrogen bonds, nameyl, O2—H2···O2 (symmetry code: -x + 1, -y, -z), O1—H1···N1 and C12—H12···O2.

Experimental

The compound (*E*)-2-[(2-Hydroxymethylphenylimino)methyl]-4-bromophenol was prepared by reflux a mixture of a solution containing 5-bromosalicylaldehyde (0.05 g 0.25 mmol) in 20 ml e thanol and a solution containing 2-Hydroxymethyl-aniline (0.03 g 0.25 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 h under reflux. The crystals of (*E*)-2-[(2-Hydroxymethylphenylimino)methyl]-4-bromophenol suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 61; m.p.387–389°K).

Refinement

For the title compound(I), the structure was solved by direct methods and refined by full-matrix least-square techniques. All H atoms were located geometrically and refined using a riding model, except for atom H1 bonded to atom O1, fixing the aromatic C—H distance at 0.93 Å, the C—H₂ distance 0.97 Å. The intensity data collected for the title structure are generally weak, so the *R*-int lies outside the normal range.

Figures

. .

Fig. 1. An *ORTEP* view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids.

(E)-4-Bromo-2-[2-(hydroxymethyl)phenyliminomethyl]phenol

Crystal data	
C ₁₄ H ₁₂ BrNO ₂	$F_{000} = 616$
$M_r = 306.16$	$D_{\rm x} = 1.608 { m Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å

supplementary materials

Hall symbol: -P 2ybc a = 6.4356 (13) Å b = 4.6361 (5) Å*c* = 42.693 (8) Å $\beta = 96.904 (16)^{\circ}$ V = 1264.5 (4) Å³ Z = 4

Data collection

Cell parameters from 7218 reflections
$\theta = 3.2 - 29.3^{\circ}$
$\mu = 3.24 \text{ mm}^{-1}$
T = 293 (2) K
Plate, brown
$0.59 \times 0.32 \times 0.03 \text{ mm}$

STOE IPDS 2 diffractometer	2418 independent reflections
Radiation source: fine-focus sealed tube	1281 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.158$
Detector resolution: 6.67 pixels mm ⁻¹	$\theta_{\text{max}} = 26.0^{\circ}$
T = 293(2) K	$\theta_{\min} = 3.2^{\circ}$
ω scan	$h = -7 \rightarrow 7$
Absorption correction: integration (X-RED32; Stoe & Cie, 2002)	$k = -5 \rightarrow 5$
$T_{\min} = 0.435, \ T_{\max} = 0.827$	$l = -52 \rightarrow 52$
8887 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.083$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.164$	$w = 1/[\sigma^2(F_o^2) + (0.0669P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 0.99	$(\Delta/\sigma)_{\rm max} = 0.001$
2418 reflections	$\Delta \rho_{max} = 0.37 \text{ e} \text{ Å}^{-3}$
167 parameters	$\Delta \rho_{\rm min} = -0.45 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
C1	0.3539 (8)	0.5546 (12)	0.15615 (15)	0.0442 (15)
C2	0.5621 (8)	0.6418 (13)	0.15407 (17)	0.0499 (16)
C3	0.6531 (9)	0.8446 (15)	0.17555 (18)	0.0569 (19)
Н3	0.7895	0.9046	0.1741	0.068*
C4	0.5485 (10)	0.9571 (15)	0.19847 (19)	0.0622 (18)
H4	0.6127	1.0933	0.2124	0.075*
C5	0.3446 (10)	0.8679 (14)	0.20100 (17)	0.0527 (17)
C6	0.2488 (9)	0.6722 (13)	0.17980 (16)	0.0471 (15)
Н6	0.1113	0.6174	0.1813	0.056*
C7	0.2448 (8)	0.3595 (12)	0.13302 (16)	0.0422 (14)
H7	0.1063	0.3119	0.1348	0.051*
C8	0.2096 (8)	0.0736 (12)	0.08767 (15)	0.0413 (14)
C9	0.0395 (9)	-0.0889 (12)	0.09518 (17)	0.0499 (16)
Н9	0.0003	-0.0846	0.1154	0.060*
C10	-0.0702 (9)	-0.2571 (13)	0.07177 (19)	0.0546 (18)
H10	-0.1835	-0.3665	0.0765	0.066*
C11	-0.0134 (9)	-0.2637 (13)	0.04185 (18)	0.0540 (18)
H11	-0.0887	-0.3762	0.0264	0.065*
C12	0.1539 (9)	-0.1049 (12)	0.03464 (17)	0.0496 (16)
H12	0.1916	-0.1122	0.0143	0.060*
C13	0.2691 (8)	0.0679 (11)	0.05727 (16)	0.0419 (15)
C14	0.4530 (8)	0.2478 (13)	0.04907 (17)	0.0497 (16)
H14A	0.4368	0.4441	0.0562	0.060*
H14B	0.5813	0.1712	0.0603	0.060*
N1	0.3306 (7)	0.2525 (10)	0.11061 (12)	0.0424 (12)
01	0.6734 (7)	0.5367 (11)	0.13205 (13)	0.0666 (14)
O2	0.4709 (8)	0.2513 (10)	0.01635 (13)	0.0743 (15)
H2	0.4878	0.0863	0.0102	0.111*
Br1	0.19493 (12)	1.02961 (17)	0.232551 (19)	0.0751 (4)
H1	0.589 (9)	0.427 (13)	0.1214 (17)	0.05 (2)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.042 (3)	0.045 (3)	0.045 (4)	0.000 (3)	0.001 (3)	0.004 (3)
C2	0.043 (3)	0.059 (4)	0.048 (5)	0.002 (3)	0.008 (3)	0.000 (4)
C3	0.044 (3)	0.067 (4)	0.059 (5)	-0.005 (3)	0.004 (3)	-0.017 (4)
C4	0.064 (4)	0.060 (4)	0.059 (5)	-0.007 (4)	-0.006 (4)	-0.001 (4)
C5	0.065 (4)	0.049 (4)	0.043 (4)	0.012 (3)	0.002 (3)	0.001 (3)
C6	0.049 (3)	0.048 (3)	0.045 (4)	0.004 (3)	0.007 (3)	0.001 (3)
C7	0.040 (3)	0.045 (3)	0.043 (4)	-0.007 (3)	0.011 (3)	0.003 (3)
C8	0.038 (3)	0.043 (3)	0.044 (4)	0.002 (2)	0.008 (3)	0.003 (3)
C9	0.046 (3)	0.054 (4)	0.051 (4)	-0.004 (3)	0.011 (3)	0.002 (3)
C10	0.046 (3)	0.052 (4)	0.065 (5)	-0.009 (3)	0.004 (3)	0.005 (4)

supplementary materials

C11	0.053 (3)	0.057 (4)	0.050 (5)		-0.010 (3)	-0.005 (3)		-0.006 (4)
C12	0.056 (3)	0.049 (3)	0.043 (4)		0.002 (3)	0.004 (3)		-0.007 (3)
C13	0.039 (3)	0.039 (3)	0.048 (4)		0.004 (2)	0.006 (3)		-0.001 (3)
C14	0.049 (3)	0.049 (3)	0.052 (5)		-0.001 (3)	0.011 (3)		-0.003 (3)
N1	0.045 (2)	0.046 (3)	0.036 (3)		0.001 (2)	0.005 (2)		0.000 (3)
01	0.051 (2)	0.083 (3)	0.069 (4)		-0.013 (3)	0.022 (2)		-0.023 (3)
02	0.108 (4)	0.071 (3)	0.050 (4)		-0.024 (3)	0.039 (3)		-0.014 (3)
Br1	0.1005 (6)	0.0744 (5)	0.0545 (5)		0.0018 (4)	0.0262 (4)		-0.0133 (4)
Geometric paran	neters (Å, °)							
C1—C6		1.392 (9)	C	C8—N1			1.439 (7)
C1—C2		1.412 (8)	C	C9—C10			1.391 (9)
C1—C7		1.456 (8)	C	С9—Н9			0.9300	~)
C2—O1		1.340 (8)	C	C10—C1	1		1.371 (10)
C2—C3		1.392 (9)	C	С10—Н1	0		0.9300	
C3—C4		1.357 (10)	C	C11—C1	2		1.370 (8)
С3—Н3		0.9300	(С11—Н1	- 1		0.9300	•)
C4—C5		1.392 (9)	(C12—C1	3		1.397 (8)
C4—H4		0.9300	(С12—Н1	2		0.9300	•)
C5—C6		1.374 (9)	C	C13—C1	4		1.523 (8)
C5—Br1		1.902 (7)	C	14-02			1.415 (8)
С6—Н6		0.9300	C	С14—Н1	4A		0.9700	-)
C7—N1		1.262 (8)	C	С14—Н1	4B		0.9700	
С7—Н7		0.9300	C	D1—H1			0.84 (6)
C8—C9		1.398 (8)	C	D2—H2			0.8200	,
C8—C13		1.396 (9)						
C6—C1—C2		118.7 (5)	C	С10—С9	—C8		118.8 (7)
C6-C1-C7		119.9 (5)	C	С10—С9	—Н9		120.6	
C2-C1-C7		121.3 (6)	C	С8—С9—	-H9		120.6	
O1—C2—C3		119.3 (5)	C	C11—C1	0—С9		120.9 (6)
O1—C2—C1		122.1 (6)	C	C11—C1	0—H10		119.6	
C3—C2—C1		118.6 (6)	C	C9—C10	—H10		119.6	
C4—C3—C2		121.9 (6)	C	C10—C1	1—C12		120.2 (6)
С4—С3—Н3		119.0	C	C10—C1	1—H11		119.9	
С2—С3—Н3		119.0	C	С12—С1	1—H11		119.9	
C3—C4—C5		119.7 (6)	C	C11—C1	2—C13		121.2 (7)
С3—С4—Н4		120.2	C	C11—C1	2—Н12		119.4	
С5—С4—Н4		120.2	C	C13—C1	2—Н12		119.4	
C6—C5—C4		119.8 (7)	C	С12—С1	3—С8		118.2 (5)
C6—C5—Br1		120.1 (5)	C	C12—C1	3—C14		121.1 (6)
C4—C5—Br1		120.0 (5)	C	C8—C13	—C14		120.7 (5)
C5—C6—C1		121.2 (6)	C	D2—C14	—C13		113.0 (5)
С5—С6—Н6		119.4	C	D2—C14	—H14A		109.0	
С1—С6—Н6		119.4	C	C13—C1	4—H14A		109.0	
N1—C7—C1		122.6 (5)	C	D2—C14	—H14B		109.0	
N1—C7—H7		118.7	C	C13—C1	4—H14B		109.0	
С1—С7—Н7		118.7	H	H14A—C	C14—H14B		107.8	
С9—С8—С13		120.8 (6)	C	C7—N1-	C8		119.5 (5)

C9—C8—N1	121.9 (6)	С2—01—Н1	103 (5)
C13—C8—N1	117.2 (5)	C14—O2—H2	109.5
C6—C1—C2—O1	179.6 (6)	N1—C8—C9—C10	-180.0 (5)
C7—C1—C2—O1	-4.2 (9)	C8—C9—C10—C11	-0.1 (9)
C6—C1—C2—C3	-0.7 (9)	C9-C10-C11-C12	0.4 (9)
C7—C1—C2—C3	175.5 (6)	C10-C11-C12-C13	-0.5 (9)
O1—C2—C3—C4	-179.6 (7)	C11-C12-C13-C8	0.3 (8)
C1—C2—C3—C4	0.8 (10)	C11-C12-C13-C14	-179.1 (5)
C2—C3—C4—C5	0.4 (11)	C9—C8—C13—C12	-0.1 (8)
C3—C4—C5—C6	-1.7 (10)	N1-C8-C13-C12	179.9 (4)
C3—C4—C5—Br1	-178.9 (6)	C9—C8—C13—C14	179.3 (5)
C4—C5—C6—C1	1.7 (9)	N1-C8-C13-C14	-0.7 (7)
Br1-C5-C6-C1	178.9 (5)	C12-C13-C14-O2	8.7 (8)
C2—C1—C6—C5	-0.5 (9)	C8—C13—C14—O2	-170.7 (5)
C7—C1—C6—C5	-176.7 (6)	C1C7	-176.7 (5)
C6—C1—C7—N1	178.1 (6)	C9—C8—N1—C7	-28.5 (8)
C2-C1-C7-N1	2.0 (9)	C13—C8—N1—C7	151.5 (5)
C13—C8—C9—C10	0.0 (8)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1—H1…N1	0.84 (6)	1.86 (6)	2.638 (7)	155 (7)
С12—Н12…О2	0.93	2.46	2.807 (8)	102
O2—H2···O2 ⁱ	0.82	1.97	2.765 (10)	163
Symmetry codes: (i) $-x+1, -y, -z$.				

